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Oscillations of a gas in a closed tube near half the 
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The oscillations are driven by the sinusoidal motion of a piston at one end of the tube. 
Near half the fundamental frequency the first overtone, driven by nonlinear effects, 
becomes resonant. For small boundary-layer friction the amplitude of this resonant 
part is comparable with the non-resonant acoustic solution and shocks are formed. 
Theoretical results are compared with pressure signals measured at the closed end 
of the tube. The viscous effects are large for air at atmospheric pressure and the 
nonlinear effects remain small. Experiments with xenon, sulphurhexafluoride (SF,) 
and Freon RC-318 (C,F,) were therefore conducted and shocks formed as predicted. 
The comparison of the nonlinear theory by Keller (1975) with the experiments shows 
very good agreement. 

1. Introduction 
Linear acoustic theory predicts 

sin (wz/a,) 
u(z, t )  = U A  COB wt, 

sin (wL/a,) 

for the one-dimensional isentropic motion of a gas in a tube shown in figure 1. As 
usual, u is the fluid velocity, w the frequency, a, the speed of sound in the undisturbed 
fluid, 1 the amplitude of the piston displacement and uA = wl. At the fundamental 
frequency w = m,/L of the tube and at its multiples, (1.1) fails and shock waves 
occur. If, on the other hand, w = xa0/2L is chosen, the amplitude of the piston 
velocity equals 4 in figure 1 and the linearized solution (1.1) can satisfy both boundary 
conditions. However, the first overtone, driven by the nonlinear effects, becomes 
resonant in this case and severely disturbs the linear solution (1.1). This is illustrated 
in figure 2 which shows the contribution of this resonant overtone to the pressure 
signal at the closed end. 

For an inviscid fluid, shocks were first predicted by Galiev, Ilhamov & Sadykov 
(1970) for this case. Some observations are also reported by Zaripov & Ilhamov 
(1976). However, their piston drive generated strong higher harmonics of the piston 
velocity which must be taken into account if their results near half the fundamental 
frequency are used. 

Keller (1975) published a theory, based on Chester's (1964) work, that takes 
viscosity into account and predicts shocks for small viscosity. This theory permits 
a comparison with the experiments reported in the present paper. Similar effects can 
be expected for a tube with an open end, as pointed out by Keller (1977), by 
Sturtevant & Keller (1978) and by Galiullin & Khalimov (1979). This case, however, 

t Present address: Brown, Boveri & Cie, AG, CH-5400 Baden, Switzerland. 
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FIGURE 1. Velocity distribution in & tube, u(L,t)  = uA coswt. 
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FIGURE 2. Contribution to the pressure signal a t  the closed end for 1/L = and inviscid flow. 
Shocks are formed in (a) .  -.-, first overtone; ---, second overtone. 
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is less well defined as the details of the flow at the open end are unknown. Similar 
but weaker effects can also be expected at multiples t ,  g, a, etc., of the fundamental 
frequency (Keller 19763). This result is supported by Mortell & Seymour (1981) who 
used a completely different approach. A survey of nonlinear acoustics is also given 
by Rott (1980). 

The present paper is based on the thesis by Althaus (1986). It describes the 
experimental verification of Keller’s ( 1975) predictions at half the fmdamental 
frequency. For a comparison of this type it is crucial to use a carefully designed piston 
drive that generates a sinusoidal motion with extremely small higher harmonics. 
Calculated and measured pressure signals at the closed end are compared. Viscous 
effects dominate the resonant mode if air is used in the present arrangement. The 
heavy gases Freon RC-318 (C,F,), sulphurhexafluoride (SF,) and xenon were 
therefore used to demonstrate the existence of shock waves and to check Keller’s 
(1975) theory. Very good agreement between experiment and theory waa found. 
Shock waves will also be observed for air at higher pressures. 

2. Theory 
2.1. Oscillations near the fundamental frequency 

The unsteady one-dimensional flow of an isentropic fluid is described by the 
well-known set of equations 

(-+(ufa)Z)(u+a) a 2 = 0, 
at ax y - i  

where a is the local speed of sound and y the specific heat ratio. Chester (1964) 
rearranges (2.1) and adds the contributions due to viscosity and conductivity. He 
aasumes that the thickness of the Stokes boundary layer is small compared with 
the tube radius and that the wall temperature remains constant. For flow Mach 
numbers 4 1 everywhere in the tube and for frequencies close to the fundamental 
(wL/a,-R < l),  Chester’s (1964) theory predicts 

with 

c-$, sinot = -%c f(t)+fa((t)-s,(--) 06, 4 Jo Ix) f(t-[)[-td[, 
R 

41 
(y + 1) L cos (wL/a,) ’ 

6, = - 

xu, tan (wL/a,) 
re = 

(y+ l )wJk!  ’ 

sc = -(-) 28 R f 
y + l  MC ’ 

(2.3) 

and c a constant of integration. Here, R, v, and Pr are the radius of the tube, the 
kinematic viscosity and the Prandtl number in the undisturbed gas. Several terms 
that are negligible for the conditions of the present experiments have been dropped 
from (2.2). 
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The unknown function f can be determined from (2.2). Results are given by Chester 
(1964) and by Keller (1976a). They predict shock waves for small re and ttC. The 
velocity u(z, t )  and the pressure disturbancep(z, t )  can be determined from the known 
solution f. There is 
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This first-order solution contains the main contribution and is sufficient to describe 
the flow in the tube for small M .  

2.2. Oscillations mar half the fundamental frequency 
The tube considered in 52.1 was driven with a frequency w close to the fundamental 
frequency xao/L. In  the present section it is driven with& and the boundary condition 
at the piston becomes 

(2.9) 

In this case the solution given by (1.1) fails, too, as the first overtone, driven by the 
nonlinear term, becomes resonant. Keller (1975) follows Chester’s (1964) theory 
described in 52.1. In Keller’s case a narrow frequency band 

u(L, t )  = U A  cos!@. 

(2.10) 
xa  

?p = $+iAw, 

with Aw/w < 1 is considered. The analysis can easily be extended to +J, +, etc. as 
long as Mortell & Seymour’s (1981) amplitude parameter (proportional to o*lL/a;) 
remains small. The following splitting that can be made according to Keller (1975) 
is crucial: 

f ( t )  = f A ( t )  + f 8 ( t )  (2.11) 

with 
1 (2.12) 

and with the abbreviations L, = xao/w. 

for the non-resonant contribution f A  : 
Introducing (2.11) into Chester’s (1964) theory leads to the following expression 

(2.13) 

The solution of (2.13)’ that corresponds to equation (6.9) in Chester’s (1964) paper 
is 

(2.14) 
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For vanishing viscosity (B = 0) this reduces to 

f A ( t )  = --sin!@. U A  

2a0 
(2.15) 

The difference between (2.11) and Keller's (1975) equation (8) explains the phase 
difference of between (2.15) and Keller's result. 

The resulting equation for the resonant contribution f ,  reads 

(2.16) 

which corresponds to Keller's (1975) equation (17). It is very similar to (2.2). The 
main difference stems from the fact that f in (2.2) is 'driven ' by the piston ( E ~  sin ot) 
while f, in (2.16) is 'driven' by the nonlinear effect ( f i )  of the non-resonant 
oscillation. Several terms that are negligible for the conditions of the present 
experiments have been dropped from (2.13) and (2.16). Viscous effects have a very 
small influence on the non-resonant part f A  for the conditions of the present 
experiments. Equation (2.15) can therefore be used in (2.16) to determine the 
second-order quantity f , .  This leads to 

with (2.18) 

6 = ;Ma, (2.19) 

(2.20) 

(2.21) 

Equations (2.2) and (2.17) are now identical except for the phase shift in the 
trigonometric function. Solutions of (2.17) will be compared with experiments in $4. 

Here, the inviscid solution (8  = 0) at resonance (r = 0) is given as an illustration. 
f A  is determined by (2.16), and (2.17) reduces to 

c+$ coswt = f :. (2.22) 

The solution that satisfies (2.12)' has a vanishing mean value and contains no 
expansion shocks reads 

f ,  = fi.M cos*t. (2.23) 

The change of sign takes place at +t = 0, IC, 2 ~ ,  . . . , with a jump from - iM to ++Y. 
The function p(0,  t )  = f A  + f ,  is similar to figure 4 in Galiev et al. (1970). 

2.3. Numerical procedures 
(i) The non-resonant acoustic contributions to u(z, t )  andp(z, t )  (corresponding totA) 
are of order Y, and their calculation deserves therefore the highest possible accuracy. 
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The solutions given by Iberall (1950) are therefore used, as they contain few 
assumptions and are not restricted to boundary layers thin compared with the tube 
radius. With the boundary conditions u(0, t) = 0 and u(L, t) = U, cosw’t, and with 
the abbreviations suggested by Rott (1969), the velocity, averaged over the cross- 
section, and the pressure disturbance can be written as 

with 

u sin (hw’zla,) _-  - exp (iw’t), 
U, sin (hw’L/~,) 

i cos (hw’zla,) 
h( 1 - fl) sin (h~’L/a,) 

.-=- P exp (iw’t), 
po a, U, 

(2.24) 

(2.25) 

wf =$, 

and J ,  and J1 are the Bessel functions of the first kind. As usual, the real parts are 
taken as the physical solutions. 

(ii) The resonant contribution fa is of order M .  Depending on the value of s different 
numerical procedures had to be used. 

For 0 < s <  0.4, fa was determined by a modification of (2.17), where the 
substitutions 

fAt) = 4 7 ( A ) ,  (2.26) 

A = ot, (2.27) 

were made. The result is 

{g(h)-3’ = c+i cosA+- g(h-a)a-ida. ; lo* (2.28) 

The function g(A) was computed with the following iteration scheme, suggested by 
Keller (19764 : 

00 {g.(A)-;} 2r = c n + i  cosh+;J, gn-l(A-a)a-ida. 
(2.29) 

It is useful to replace the integral with Chester’s (1964) equation (6.4), 

The iteration is started with the inviscid solution for gn-l .  The constant of integration 
c, is determined such that the minimum of the terms on the right-hand side of (2.29) 
equals zero. A t  the time of this minimum the solution g(h) is allowed to change from 
the positive to the negative root of the right-hand side. The position of the shock 
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(jump from the negative to the positive root) is chosen such that the average of g ( A )  
vanishes. The integration was carried out with 400 points per period. 

For 0.4 < s < 1, slow convergence of the scheme mentioned above was observed. 
Successive iterations generated shocks located on either side of their ha1  position 
with a slowly decreasing deviation. The following procedure solved this problem : 

The rest of the procedure was unchanged. 

leading to (2.14) can also be used here. The result is 
For s % 1 the nonlinear contribution f: in (2.17) can be neglected and the arguments 

2r 
- cos wt +is cos (wt + in) 

(2.32) 
x 

4r f 8 ( t )  = -' C) +2iys+se 

For the experiments with air, s is as low as 3.8, but (2.32) is still an excellent 
approximation for the terms with the argument wt. To show this, (2.32) is inserted 
into the f :-term in (2.17). An improved f, is then determined with the remaining linear 
terms. This solution contains (2.32) and new terms with the argument 2wt. If this 
procedure is repeated once more, the terms in (2.32) are slightly changed. To show 
the difference, this improved solution is compared with (2.32) at resonance. 

Equation (2.32) predicts a maximum of the g(A) amplitude for 

and, there, is sin wt . I 
f8, = (1/2)9 

(2.33) 

(2.34) 

At the resonant frequency, determined by (2.33), the improved solution is 

(2.35) 
d 

cos wt . 1 '" = ' [ m - 4 z / 2 ( 4 2 - l ) s 5  ] sinwt-4(1/2)s5 

For s = 3.8 the differences between the amplitudes and the phases predicted by (2.34) 
and (2.35) are negligible. 

The numerical predictions of this section are compared with the experiments in 
figures 5-9. 

3. Experimental arrangement and test procedure 
The experiments were conducted in an aluminium tube with an inner diameter of 

20 mm (R = 10 mm) and a wall thickness of 2 mm. A pressure transducer was inserted 
flush into the end plate at x =  0. Kistler transducers 7031 and 601 A with 
eigenfrequencies of 80 and 130 kHz were used for the experiments with heavy gases. 
Both transducers gave the same results. The pressure signals with air had 
considerably smaller amplitudes and contained no shocks. A DRUCK PDCR 22 
transducer with a lower eigenfrequency of 28 kHz, but with a better resolution, was 
therefore used in this case. The temperature at x = 0, x = iL and 96 mm from the 
piston was measured with thermocouples. The three readings differed at most by 
0.4 K, which is in accordance with Merkli & Thomann (19753). 
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FIGURE 3. Arrangement for the generation of a sinusoidal piston motion. 

By far the most crucial part of the present experiment was the arrangement that 
generated the sinusoidal motion of the piston. It is shown in figures 1 and 3. The 
rotating part consists of a crankshaft (4) with a crankpin (8) and flywheel (3). A plate 
(7) with a horizontal slit transferred the rotation into an oscillation of the piston (6). 
The eccentricity of the crankpin could be changed. It determined the amplitude I of 
the piston motion. The piston was sealed with an 0-Ring and lubricated from below 
with an oil mist. The position of the piston was determined with a disk (2) with 360 
notches and photocells (1). (5) is an elastic connection with the tube. The crankshaft 
was driven by a d.c. motor with an accurate speed control. 

Two effects render the present experiments difficult. First, shocks occur only in a 
very narrow frequency band with Irl < 1. Equation (2.20) leads to Aw/w = O(Z/L) 
for the present subharmonic resonance, while (2.4) predicts a much wider band 
Aw/w = O(Z/L)f for the ordinary resonance. Very good speed control is therefore 
necessary. Relative speed variations observed during one experiment were below 
0.2%. The second and still more critical effect is the second harmonic of the piston 
motion. It drives the resonant oscillationf, the nonlinear, and smal1,fI in (2.16) 
does. If 1, is the amplitude of the piston motion's second harmonic, and la, the critical 
amplitude that has the same effect asf: has, a comparison of (2.19) with (2.3) leads 
for oL/a, = ~t to 

(3.1) lac - in, 1 
-- 1 64 (y+')Z' 
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v1 ;:;.;sa 

v2 r=-2.81 
s = 5.17 

- v3 r = -2.08 
s = 3.85 
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4-+- 

+-4- 

r 
- 1.0 0 1 .o 

FIGURE 4. Experiments in the (r, 8)-plane; r from (2.20) and 8 from (2.11). Numbere for V1 to 
V3 are at the resonant frequency. 

As 1, 4 l,, is required, a careful design and test of the piston drive is crucial. The 
amplitude I, was determined with a Kistler 8044 accelerometer attached to the piston. 
For the smaller piston amplitude (1 = 9.44 mm) there resulted 1, < 0.002 mm while 
1, < 0.003 mm resulted for I = 12.68 mm. This leads to upper limits for Z,& and thus 
for the error of the amplitude of the resonant overtone of fJ-8 % for air and of 2-3 % 
for the other gaaes. The motion of the closed end of the tube was an order of magnitude 
smaller than I, and can also be neglected. 

It can also be shown that the error introduced by neglecting the difference between 
the real piston velocity u(zpiSton, t )  and the assumed u(L, t )  in (2.9) is negligible for 
the present conditions, as &+k(L, t )  x 0 for the ‘driving’ non-resonant acoustic 
solution. 

The tests were conducted in the following way. A fixed frequency close to resonance 
was chosen and the signal of the pressure transducer was recorded 72 times per period 
of oscillation during 17 periods, except for xenon where 60 points per period were 
recorded during 21 periods. The temperature and the frequency were recorded less 
frequently as their changes during an experiment were negligible. This procedure was 
repeated for different frequencies. 

4. Results 
Eight experiments were conducted and their location in the ( r ,  8)-plane is shown 

in figure 4. Four of them will be presented here; the rest are presented by Althaus 
(1986). The pertinent parameters for the experiments are given in table I .  

6 F L P  183 
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Experiment v 3  v 4  V6 V8 

1 (mm) 12.58 12.60 12.58 12.58 
L (m) 1.1556 0.4856 0.4756 0.3956 
Po (bar) 0.9521 0.9530 0.9593 0.9426 
TJ (K) 293.1 292.5 290.9 291.9 
Po (kg/m3) 1.127 5.171 (V) 5.867 (D) 8.014 (M) 
a0 (mb)  343.7 175.3 133.3 111.4 
vo mz/s 1.611 0.4350 (A) 0.2587 (B) 0.1446 (A) 
c p  (J/kg. K) 1004.1 160.0 (V) 666.1 (D) 792.7 (M) 
Pr 0.7101 0.6380 (A) 0.7494 (B) 0.7510 (A) 

1.398 1.667 (B) 1.087 (D) 1.055 (B) 
- -0.0039 0.0029 - 0.01 02 

Y 

M 0.0171 0.0408 0.0415 0.0500 
A (equation (4.5)) 134 359 427 588 

Gas Air Xe SF, RC-318 

(a,-a,)/a, 

TABLE I .  Numerical data used for the reduction of the experiments, M = uA/aO = d/2L at 
resonance. The properties of air were calculated with the equations collected by Lommel (1981). 
[Source of properties: (A), Air Liquide 1976; (B), Braker & Mossman 1976; (D), Doring 1979; 
(M), Matthias & Loffler 1965; (V), Vargaftik 1975.1 

4.1. Results for air 
In this case the viscosity parameter s at resonance equals 6.45, 5.17 and 3.85 and 
no shocks are formed. The measured pressure p(0, t) was therefore decomposed into 
its Fourier components. The piston velocity, the non-resonant first harmonic and the 
resonant second one are defined by 

(4.1) 

(4.2) 

(4.3) 

u(L, t)  = UA cos+iJt, 

Pl(0, t )  = $1 cos (W + $1)’ 
P2(0, t )  = $2 cos (ot+ $21, 

with uA = +id. 
The results for the first harmonic are shown in figure 5.  The difference between the 

experiment and the linear theory (equation (2.25)) is less than 0.4 %, which is within 
the experimental accuracy. 

The resonant second harmonic is driven by nonlinear effects, and it would vanish 
if they did not exist. The good agreement between the experiment and the theory 
shown in figure 6 is therefore a good confirmation of Keller’s (1975) theory. The 
difference between the experimental and the theoretical maximum of the amplitude 
is 2 yo and supports the accuracy of the piston motion indicated in $3. For experiment 
V3 the amplitudes j3/poa,uA were, for the first to the sixth harmonic respectively, 
1.004/0.187/0.0036/0.0137/0.0~67 and 0.00141. The discrepancy in the phase q52 
cannot be explained with experimental errors, as dl in figure 5 is correct. 

4.2. Resdts for the heavy gases 

Shock waves formed in this case in a very narrow frequency band. The position of 
the shock on the first harmonic (figures 7-9) allows a very accurate determination 
of an experimental resonant frequency 

(4.4) 
zat? 0, = - 
L ’  
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- 

FIGURE 5. Amplitude and phase of first harmonic, experiment V3, parameters in table 1, 
-, equation (2.25). 

close to na,/L, where a, is a fictitious speed of sound near a, = (yp,/p,)f .  For the 
comparison with theory, a, was used to determine 60 in (2.10) and (2.20). The small 
differences (a, -a,)/a, are given in table 1 for the different experiments. As they are 
fairly constant for a given gas and of different signs for different gases, it is likely 
that the corrections are mainly due to small errors in the speed of sound calculated 
from y ,  p, and po predicted by the literature, and to higher-order non-linear effects 
not taken into account in Keller’s (1975) theory. 

The experiments are compared with theoretical predictions in figures 7-9. Five 
different frequencies are shown, with number 3 closest to resonance. Excellent 
agreement is again observed. The first harmonic of the signals was compared with 
(2.25). For Xe and SF, the deviation was 0.3 %, while for Freon it was 1.4 %. 

The need for higher-order corrections of the theory, aa considered by Keller 
(19763), are indicated by the small asymmetry of the pressure signals. The experi- 
ments are above the theoretical curve both at the pressure maximum and a t  the 
minimum, and the deviation increases with decreasing viscosity parameter. 

Experiments by Merkli & Thomann ( 1 9 7 5 ~ )  and Stuhltriiger & Thomann (1986) 
with the same equipment showed that the boundary layer on the tube wall becomes 
turbulent if 

A =  2B 350 to 750 
(Of V,)% 

(4.5) 

where B is the local velocity amplitude and of = + is the frequency of the piston 
motion. 

Numbers for the present experiments are given in table 1. Some turbulence might 
have been present for V8, but a comparison of the signals in figure 9 with the other 
results shows that the influence of turbulence is negligible. 

6-2 



158 R. Althaus and H. Thomann 

0.2, 

o !  I I I I  I 1  a 1 

0.415 0.5 0.525 
OL 
2n0, 
_. 

0 -  

-90 - 

b 

* *  
- 180 I I I ,  1 , I  I I I 1  

0.415 0.5 0.525 
W L  
2n0, 

FIGURE 0. Amplitude and phaw of the resonant second harmonic, experiment V3, parameters 
in table 1, -, equation (2.32). 

5. Conclusions 
The first overtone, driven by nonlinear effects, becomes resonant near half the 

fundamental frequency. The amplitude of this resonant contribution is comparable 
to the non-resonant linear solution as shown in figure 2. This resonant peak is very 
narrow and more strongly damped by viscous effects. The present experiments show 
that Keller’s (1975) theory predicts these effects very well. Unexplained is the 
discrepancy in the phase in figure 6. 
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FIQURE 7. Pressure at the cloaed end for xenon, experiment V4, parameters in table 1. 1: 
r=--0.840, 8 = 0.856; 2: r=-0.601, 8=0.853; 3: r=-0.460, a =  0.851; 4: r =-0.116, 
8 = 0.840; 5: r = 0.101, 8 = 0.836. 

FIGURE 8. Pressure at the closed end for SF,, experiment V6. 1:  r =-0.904, 8 ~ 0 . 5 5 8 ;  2: 
r = -0.626, 8 = 0.554; 3: r = -0.368,8 0.552; 4: 7 = -0.198, 8 = 0.649; 5: T = 0.182, 8 = 0.544. 

Similar effects are predicted by Keller (1976b) for multiples 4, etc. of the 
fundamental frequency. In  this case, however, they remain well below the non- 
resonant signal and are difficult to detect. Figure 10 shows the results of an 
experiment with Freon R 114 ( I  = 12.58 mm, L = 0.407 m, BwL/na, % 0.995). An 
indication of three shocks is clearly visible. No reduction of the data was made, as 
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PIQURE 9. Pressure at the closed end for Freon RC-318, experiment V8. 0: r = -1.076, a = 0.348; 
1: r = -0.940, s = 0.347; 2: r = -0.596, a = 0.344; 3: r = -0.271, s = 0.342; 4: r = 0.360, 
s = 0.335; 5: r = 0.636, s = 0.334; 6: r = 0.810, a = 0.332. 

I 
I 

FIGVRE 10. Pressure signal near f of the fundamental frequency. Shocks at (I), (2) and (3). 

the frequency band is still more narrow and the requirements on the precision of 
piston drive are more severe. 

It was pointed out by Rott (1980) that similar effects can be expected at any 
rational fraction of the fundamental frequency. As these higher-order effects are more 
strongly damped by viscosity, they will not show up unless the kinematic viscosity 
is extremely small, which is the case at high pressures. 
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